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Abstract—Data-intensive applications are best suited to high-
performance computing architectures that contain large quan-
tities of main memory. Creating these systems with DRAM-
based main memory remains costly and power-intensive. Due to
improvements in density and cost, non-volatile random access
memories (NVRAM) have emerged as compelling storage
technologies to augment traditional DRAM.

This work explores the potential of future NVRAM tech-
nologies to store program state at performance comparable to
DRAM. We have developed the PerMA NVRAM simulator that
allows us to explore applications with working sets ranging up
to hundreds of gigabytes per node. The simulator is imple-
mented as a Linux device driver that allows application execu-
tion at native speeds. Using the simulator we show the impact
of future technology generations of I/O-bus-attached NVRAM
on an unstructured-access, level-asynchronous, Breadth-First
Search (BFS) graph traversal algorithm.

Our simulations show that within a couple of technology
generations, a system architecture with local high performance
NVRAM will be able to effectively augment DRAM to sup-
port highly concurrent data-intensive applications with large
memory footprints. However, improvements will be needed
in the I/O stack to deliver this performance to applications.
The simulator shows that future technology generations of
NVRAM in conjunction with an improved I/O runtime will
enable parallel data-intensive applications to offload in-memory
data structures to NVRAM with minimal performance loss.
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I. INTRODUCTION

Data-intensive applications with large working sets chal-
lenge the capacity of present day computing systems. To
better accommodate data-intensive applications, recent su-
percomputer architecture proposals (e.g. [1]) advocate in-
tegrating non-volatile storage into the fabric of computing
systems. In our work, we focus on the architecture of a single
multi- (many-) core compute node with one or more PCIe-
attached high performance NVRAM storage array(s). This
configuration offers numerous benefits both standalone and
even more as part of a compute cluster, including reduced
operating costs for power and cooling, greater reliability, and
potentially, higher performance.

It is often the case that the number of nodes in a
supercomputing cluster is dictated more by the amount of
memory than by compute power. If NVRAM can effectively

increase the memory available to the application without
appreciably increasing power requirements, clusters could
achieve desired performance at lower node count, reducing
cost and power/cooling requirements. Alternatively, individ-
ual NVRAM-augmented compute servers can scale to tackle
extremely large data-intensive problems, as demonstrated by
the 7th highest ranked machine in the Graph500 for June
2011 [2].

In this work, we address the challenge of achieving
DRAM-like performance when some portion of the program
state resides in I/O bus-connected storage arrays capable of
low latency random access. We use the programming model
proposed by other researchers of storage class persistent
memory (e.g. [3] and [4] among others) in which all program
state is addressed as in-memory, and some portion of that
state resides in NVRAM. There are several variants of that
model ranging from using DRAM as a cache for the large
persistent memory, to providing language constructs that
manually partition the program state between persistent and
transient data.

As an implementation mechanism in Unix-like systems,
the most natural method is to memory-map the contents
of the NVRAM into the application’s address space. Not
only is the integration to the application simple, but the
programmer interacts with the persistent data in the same
manner as dynamically allocated stack and heap data struc-
tures. Furthermore, the operating system provides automatic
runtime buffer management for the data stored in NVRAM.
We choose a memory-mapped abstraction in preference
to standard buffered I/O or direct unbuffered I/O for its
potential as a high-performance interface and for the ease
with which it could be integrated into legacy codes.

In this paper, we use parallel, asynchronous graph traver-
sal as the driving application. We have found that large
graph analysis problems are a very compelling example for
data-intensive computing. Specifically, Breadth-First Search
graph traversal combines several different and very chal-
lenging data access patterns that are quintessentially data-
intensive computing. At the same time, it is a fundamental
analysis capability that many researchers are interested in
solving efficiently. Our previous work [5] has shown that



for this application, a multi-core compute node with NAND
Flash memory can effectively replace a collection of tradi-
tional DRAM-only compute nodes.

Graph analysis presents extreme demands to the memory
hierarchy. At their core, many graph analyses create unstruc-
tured memory access patterns, as exemplified by standard
traversals such as Breadth-First Search (BFS). An unstruc-
tured access pattern defeats many of the traditional opti-
mizations for rotating media and the current generation of
NAND Flash [6]. We have found that algorithmic techniques
such as high thread concurrency, with CPU oversubscription,
can mitigate the access latency for current NVRAM. In this
work, we focus on the per-node design pattern used in our
graph traversal algorithms: highly multi-threaded, memory-
mapped access to a node-local, I/O-bus-attached NVRAM
subsystem.

Several recent research efforts have demonstrated the fea-
sibility of new types of non-volatile random access memory
(NVRAM) such as phase-change memory (PCM), spin-
torque transfer ram (STT-RAM), and memristors. These
technologies are predicted to provide lower overall energy
consumption, demonstrate read and write latencies that
approach DRAM, and support efficient random read/write
access patterns. In this work we show how improvements
in read and write latencies of future NVRAM technologies
will impact algorithms with memory access patterns that are
predominantly unstructured. Furthermore, we demonstrate
that with proper latency hiding techniques, it is not necessary
for NVRAM to achieve raw DRAM-class performance to
provide compelling system performance. Finally, we demon-
strate that the combination of high-performance NVRAM
and an efficient memory-mapped runtime will allow appli-
cations to effectively offload heap allocated data structures
into persistent storage, reducing the application’s DRAM
requirements.

We consider the impact of these new NVRAM technolo-
gies as fast peripheral-attached storage, as this is the most
likely form factor to appear in the five year time frame. In
this model, NVRAM appears as traditional persistent block
storage. It is connected to the CPU via a peripheral bus and is
part of a name/address space that is physically separate from
main memory. To model these technologies and their impact
on data-intensive applications at scale we have developed
the PerMA simulator, which is detailed in Section III. In
our use cases, the application accesses data associated with
named files in a filesystem by memory-mapping the files
using the Linux mmap system call interface. We favor this
method of interaction because it provides naming, sharing,
and protection through the file system, and simultaneously
provides in-memory access through virtual address mapping.
For this work we do not explore memory architectures
that place NVRAM on the memory bus (e.g. [7]), as we
see this architecture appearing at the cost and density we
need beyond our relatively near term horizon [8]. Rather,

our analysis studies future device technologies with lower
latency than NAND Flash accessed over faster peripheral
buses than currently exist.

II. FUTURE NVRAM TECHNOLOGIES

NAND Flash memory is currently the leading mass pro-
duced NVRAM technology. It is characterized by asymmet-
ric read, write, and erase times and only provides access to
page and block sized regions. In general, it requires 10s
of microseconds to read, 100s of microseconds to write,
and 1000s of microseconds to erase blocks of data. These
devices typically perform hundreds to thousands of times
faster than traditional spinning media, especially for random
access workloads, but at the same time, lag DRAM latencies
by several orders of magnitude.

The next generations of NVRAM technologies may still
have asymmetric read / write / erase times, but are pre-
dicted to be faster than Flash by an order of magnitude or
more. These technologies provide lower average power than
DRAM by storing data as something other than the presence
or absence of an electrical charge. For example, these new
technologies store data as a crystalline state, magnetic spin,
or oxygen vacancies, avoiding the cost of data refresh
and static leakage. Furthermore, these storage techniques
are predicted to scale to higher densities than traditional
DRAM, offer read / write access times that are closer to
DRAM speeds, and provide a finer granularity of access than
NAND Flash. This combination of improvements makes
these NVRAM technologies compelling for augmenting tra-
ditional DRAM when supporting data-intensive applications.

While many of these technologies exist in research labs,
none of them are yet available at the scale or density required
to support data-intensive computing. Therefore, to study the
impact that these future technologies will provide for system
architects and programmers, we have developed a simulator
that allows us to model the read and write access times of
these future technologies. Our simulator runs at a scale that
allows us to explore interesting data-intensive applications.

III. THE PERMA SIMULATOR

The Persistent Memory Architecture (PerMA) simulator
is designed to model a system architecture that integrates
high performance, page accessible, persistent memory into
the address space of a process. The simulator supports
hundreds of gigabytes of storage and can simulate the
predicted delays for a wide range of NVRAM technologies
and generations. We developed the PerMA simulator as a
device driver for Linux. It is a ramdisk-style device that
stores an application’s data in privately held DRAM pages,
and can insert a customizable delay when a page of data is
accessed. This simulator is open source and is available at
[9] for non-commercial public and academic use.

The PerMA driver can insert distinct access delays for
both page read and write, and can model the overhead of



moving data through a peripheral bus and a device controller.
The driver is re-entrant and scales to support hundreds
of concurrent page requests. Furthermore, the driver can
support application execution in real-time.

A. Simulation Model

One of the main design goals of this simulator is to
provide a realistic, but not overly complicated performance
and delay model. In particular, the model was designed to
characterize the major performance factors in the operating
system, peripheral bus, and NVRAM device, without trying
to specifically replicate a single device or system. This
approach allows us to provide a first-order approximation of
an application’s performance, and serve as a realistic upper
bound on hardware performance, assuming that software
bottlenecks can be addressed. The key characteristics of the
performance model, shown in Equation 1, are listed below
and are customized for read and write access.

• Let D be the device access latency, which is the time
required to access a block of NVRAM technology,
typically 4 KiB.

• Let P be the peripheral bus latency per byte, the time
required to transfer a single byte of data across the
peripheral bus. Note that if this value is 0, then the
NVRAM is effectively attached via a memory bus.

• Let E be the efficiency of the peripheral bus, incorpo-
rating protocol, software driver, and hardware controller
overheads.

• Let C be the device controller latency per byte, the time
required by the NVRAM device controller to process
each request and send or receive the data.

• Let R be the driver latency, i.e the amount of time
required by a software driver to process the request
prior to queuing a request to the peripheral bus.

• Let N be the number of concurrent read or write
accesses.

• Let S be the size of the block of data being transferred,
typically a single 4 KiB page.

IO latency = D+R+N ∗ (P/E +C)∗S (1)

The performance model is designed to simulate a periph-
eral bus that allows pipelined access and a NVRAM ar-
chitecture with abundant parallelism internally for servicing
requests. The peripheral I/O bus model is a packet based
protocol, with a fixed cost for sending an individual packet
of data. Therefore the time required to service any individual
read or write access is proportional to the number of concur-
rent requests already outstanding and the base access time
that results from the device access latency and driver latency.
The driver also internally models a page/buffer cache that
can be limited to a programmable fixed size.

B. Implementing the PerMA simulator

The PerMA device driver is implemented as a character
device for the Linux 2.6.x kernels, which allows it to
be directly memory-mapped into an application’s virtual
memory space. Directly memory-mapping the device driver
allows for a very lightweight and scalable interface for the
application. Furthermore, once a page is memory-mapped
into the virtual address space, it is accessed at hardware
speeds. An alternative approach would be to use the block
device interface. However, we found that a driver based on
the Linux block ramdisk did not scale as effectively to highly
concurrent access patterns as the memory-mapped character
device.

The basic mechanism for instituting the IO latency starts
by memory-mapping a file or the raw device into the
application’s virtual memory address space. Then any access
to data held by the PerMA driver will potentially trigger a
page fault, that the PerMA driver will service. The driver
will map the desired page into the user’s page table, but it
will also force the application thread to delay its execution
to model the time required to fetch the page from hardware
in the simulated system. This delay is implemented as
a spin-wait, schedule yield, or a sleep depending on the
desired length of the delay. For the majority of the simulated
latencies we have found that forcing the thread to yield the
processor without going to sleep provides the best balance
of minimizing overhead and achieving an actual delay that
is close to the desired delay.

Since the driver is re-entrant, when concurrent accesses
are issued by independent CPU cores, they each calculate
the expected delay (Eqn. 1) and then wait until that time
has elapsed. Using this approach, independent requests are
able to overlap their device access latency (D) and driver
latency (R), which corresponds to having parallel access
to the hardware and independent cores. The transit delay
(P/E +C), which corresponds to the peripheral bus latency
and device controller latency, is then proportional to the
number of concurrent accesses to those shared resources.

One challenge when using a memory-mapped interface
is that once a page mapping is established, the PerMA
device driver normally does not see any subsequent requests
for that page. Therefore, without further action, a memory-
mapped device driver cannot model a fixed sized buffer.
The simulator solves this problem by implementing a page
management runtime that provides a simple page eviction
policy and ensures that only a fixed number of pages are
simultaneously mapped into the application’s address space.
The PerMA driver does this by using first-in-first-out (FIFO)
queues that track when a page fault occurs and periodically
flushing all page table mappings for small batches of the
oldest pages (i.e. least recently faulted) in the queues. This
forces subsequent accesses to these pages to incur page
faults. Faults for pages that are in the process of being



flushed from the page tables (i.e. eviction), are minor faults
and will recover the page from an eviction queue with
minimal delay. Access to new pages, or ones that have
completed being evicted from the queues, will incur a full
page fault with associated IO latency to model bringing the
data from NVRAM.

Primary FIFO?

Hotpage FIFO

Eviction Queue

is a hot page

writeback page page fault
page evicted

Figure 1. PerMA buffer management.

Figure 1 shows a logical diagram of the FIFO queues in
the driver. When a page fault occurs, the simulator models
the read time and then inserts the page into the primary
FIFO. In the steady state, this insertion will force a page
to be removed from the primary FIFO. If the page that is
removed from the primary FIFO has experienced a greater
than average number of page faults, it is hot and will be
placed in the hotpage FIFO at which point a page from the
hotpage FIFO is placed in the eviction queue. Otherwise, the
page is placed in the eviction queue. As a page is queued
up to be evicted it is removed from the application’s page
tables and the simulator models the writeback to persistent
storage for all dirty pages. Finally, groups of pages in the
eviction queue are then removed from processor’s translation
lookaside buffers (TLBs) in bulk.

IV. RELATED WORK

There have been several other research efforts that have
explored the impact of future NVRAM technologies and the
impact of Flash on applications and operating systems.

From an memory architecture point of view, the work
by Qureshi et al. [7] provides a straightforward design for
integrating PCM into the memory hierarchy. They use PCM
with a small DRAM cache to improve both performance
and lifetime of PCM. This style of architecture is one of the
options for the PerMA simulator when it runs without the
peripheral bus and associated controller.

The Moneta project [6], [10] examines the performance
of fast NVRAM attached via a peripheral bus. They have
developed an FPGA-based simulation platform that lets them
provide precise timing characteristics for up to 64 GiB of
simulated memory. While this platform provides an effective
mechanism for exploring future NVRAM technology, it is
limited to today’s bus technology and does not scale to data-
intensive applications with workings sets in the hundreds of
gigabytes.

The Mnemosyne [3] project considers how to effectively
write to NVRAM devices. Both our and their work use a
device simulator, but they base their simulator on the native
block ramdisk present in the Linux 2.6 source code. Like the

PerMA simulator, the device driver is able to delay read and
write access to pages of memory, although the block driver is
restricted to working with standard and direct I/O accesses.
We previously explored the same line of implementation,
but we found that the Linux block ramdisk driver is not as
scalable to a large number of threads at high rates of access
as a tuned memory-mapped driver. Furthermore, the driver
is only able to catch I/O requests that are not serviced by
the page cache.

SSDalloc [4], explores mechanisms for making allocation
and write-back of persistent objects more efficient, but does
not explore the performance impact of NVRAM. Their goal
is to make SSDs appear more like memory, while PerMA
preserves some aspects of a file system, so persistent objects
can be named like files. On the other hand, BPFS [11]
exposes PCM through a file system interface and considers
optimizations for a hardware architecture to support efficient
I/O, but they do not support memory-mapped access to files
stored in PCM.

V. GRAPH ANALYSIS - BFS TRAVERSAL

As mentioned previously, graph analysis is one of the
driving applications for data-intensive computing. Traversing
large graphs typically produces an unstructured sequence
of memory references, with very little locality, and a low
computing to communication ratio. The poor computation
to communication ratio makes it difficult to efficiently par-
allelize a graph traversal across a HPC system, thus making
data-intensive architectures with local NVRAM attractive
since they have lots of low-latency storage that is shared
between cores and processors.

The implementation of Breadth-First Search that we are
using was derived from a previously published version in
[5]. In our previous work, we demonstrated that our level-
asynchronous multi-threaded approach to graph traversal
is capable of tolerating I/O latencies when the graph is
stored on NAND Flash. Additionally, we showed that with
sufficient oversubscription of thread-level parallelism our
semi-external graph algorithm, with the graph stored in
NAND Flash, was within 2−3× of the performance when
the graph was stored completely in DRAM. To achieve this,
we manually partitioned the associated Breadth-First Search
data structures into heap allocated algorithmic data and
persistent memory allocated graph data; the heap allocated
algorithmic data represents the minority of the total data, but
the majority of the total accesses and has access patterns that
are the most unstructured.

In this work we extend that experiment to find out how
much more performance improvement from the NVRAM is
necessary to close that performance gap, and if that per-
formance comes directly from the NVRAM access latency
reduction, improvements in peripheral bus bandwidth, or
other factors. Furthermore, we test the impact of reducing
the size of the working set for the application by offloading



heap allocated data structures to persistent storage. Thus, in
contrast to our previous work where data structures were
manually partitioned into heap and persistent memory, in
this work we allocate all data structures into the persistent
memory and allow the simulator to apply its page caching
policies throughout the entire memory space. A challenge
that arises from offloading the BFS algorithmic data to
the persistent memory is that it is accessed much more
frequently than the bulk of the graph data. Furthermore,
within the BFS algorithmic data, while some small parts
of the data structures are accessed the most frequently, the
majority of the algorithmic data accesses have very little
locality.

The asynchronous BFS application interfaces with the
NVRAM using a memory mapped interface (mmap). In
Section VI-B we identify bottlenecks with Linux’s memory-
map implementation. However even with these bottlenecks
our previous work has shown that using mmap is faster than
direct I/O requests for this application, when the application
lacks internal page caching. This is due to the application’s
ability to reorder accesses to increase page reuse, which
benefits the memory-mapped approach.

VI. CALIBRATING THE SIMULATOR

To establish that the PerMA device driver provides a
reasonable model of target hardware technologies, we have
run several calibration micro-benchmarks on the PerMA
simulator and both FusionIO and Virident PCIe-attached
Flash cards. The micro-benchmarks performed random read
and write I/O operations to the memory-mapped PerMA
driver or directly to the PCIe Flash devices. We chose to use
a distribution of random addresses that was uniform across
the entire address range. The single uniform random I/O
workload is very challenging because it has minimal page
locality and is comparable to the data access patterns for the
vertex and edge data in asynchronous BFS graph traversal.

The test platform for the calibration and all experiments
was a 4 socket, 32 core AMD Opteron machine with 512
GiB of DRAM. For calibration we used either a single 200
GiB SLC NAND Flash Virident tachIOn Drive PCIe 1.1 x8
card, or four 80 GiB SLC NAND Flash FusionIO ioDrive
PCIe 1.1 x4 cards. The four FusionIO cards are configured
as a single RAID-0 software raid, interleaved every 256
KiB. The BIOS on the system was configured to interleave
the DRAM across all sockets and memory controllers. We
disabled swap, as well as CPU throttling.

For the PCIe-attached Flash devices, we performed 4 KiB,
page-aligned, direct I/O accesses. Direct I/O avoids the use
of the buffer cache and associated software overheads, thus it
provides a good estimate of the raw, achievable performance
of the devices. For the PerMA driver, the simulated storage
was interleaved across all NUMA nodes and the internal
buffer was set at 2 GiB. This was large enough to provide
a balanced sampling of the buffer management overhead

and yet small enough to minimize the potential for caching
effects. Furthermore, the results were manually inspected
to ensure that fewer than ∼ 1% of I/O requests hit in the
cache. The results of the calibration are shown in Figures
2, 3, and 4, each of which plots the number of threads
running versus the average number of I/O operations per
second (IOPS) achieved. The micro-benchmarks, using a
uniform random distribution of address requests, issued
approximately 5,000,000 requests, which corresponds to
approximately 20 GiB of data out of a 186+ GiB region
in the persistent store.

A. Uniform random I/O distribution
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Calibration with read−only random IO benchmark

(1) PerMA Sim. 100us read PCIe 1.1 x8 50% eff.

(2) PerMA Sim. 100us read PCIe 1.1 x16 40% eff.

(3) 4x RAID 0 FusionIO Direct I/O

(4) 1x Virident Direct I/O

Figure 2. Read-only random I/O benchmark with uniform distribution.
We refer to the curves shown here by the order in which they appear in
the legend.

Figures 2, 3, and 4 show throughput measured in IOPS
versus an increasing numbers of threads for read-only,
write-only, and read/write request sequences, respectively.
In Figures 2, 3, and 4 there are four configurations shown,
two that used the PerMA driver, one with a single Virident
card, and one with four RAIDed FusionIO cards. Curve 1
(the top line in the legend) shows the driver configured with
a 8x PCIe bandwidth running at 50% efficiency, while curve
2 shows performance of the simulator with a PCIe x16 bus
running at 40% efficiency. Finally, curves 3 and 4 show
the performance of 4x FusionIO cards and a single Virident
card, respectively. The efficiency rating of the simulator was
derived empirically to match the first order performance of
our target PCIe-attached Flash cards. The key differences
between the empirical and theoretical PCIe bandwidth stem
from the packet overhead on the bus and the PCIe software
stack. The PerMA driver introduced no additional driver
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Figure 3. Write-only random I/O benchmark with uniform distribution.
We refer to the curves shown here by the order in which they appear in
the legend.
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Figure 4. Read/write random I/O benchmark with uniform distribution.
We refer to the curves shown here by the order in which they appear in
the legend.

delay, beyond what was already required to service the page
fault.

In Figure 2, curve 3 shows that the FusionIO read perfor-
mance closely matches curve 2. Despite the theoretical band-
width of the four RAIDed FusionIO cards, its performance
is most closely matched by the simulator when modeling
the 16 lane PCIe with 40% efficiency. The discrepancy
between the stated and observed PCIe bandwidths is a

product of how efficiently FusionIO’s driver and controller
is able to utilize the PCIe bus. Furthermore, we observe
that after concurrency increases past 128 threads, FusionIO’s
throughput declines in contrast to the other curves. The
PerMA driver specifically does not strive to exactly match
the performance of the Flash cards because their results are
a product of the complex interplay of OS I/O interface and
scheduling, the device drivers, and the hardware controllers.
Curve 4 (in Figure 2) shows the read performance of the
Virident card, which does not exhibit the same drop in IOPS
with increased concurrency. As a single device, it does not
offer the same bandwidth as the RAIDed cards, however, it
achieves a higher bus efficiency. As shown in Figure 2, its
peak bandwidth comes close to that of curve 1 when the
PCIe bus is modeled to achieve 50% efficiency.

Figure 3 shows the performance of the simulator and Flash
cards for a write-only request sequence. The performance
of both the FusionIO and Virident cards are much less
predictable with write requests. Curve 3 shows that the IOPS
achieved exceed the number predicted, peaking when there
are tens to just over a hundred threads executing. Common
optimizations such as early write completion (i.e. the write is
cached and “completed” before it is fully flushed to the Flash
cells) and I/O-bus request aggregation in the device driver
or flash controller are the likely causes of this performance
improvement. The performance of the Virident card, curve
4, has a very unusual, but repeatable dip with 14 threads
and flatline performance with tens of threads. As with the
read-only performance these types of irregularities are likely
due to software and/or system idiosyncrasies and are not
intended to be captured by the simulator, which is intended
to give a first-order performance model.

Finally, Figure 4 shows the performance of the simulator
and PCIe-attached Flash cards with a mixed 50%-50% read
and write workload. Curve 3 shows that the performance of
the four FusionIO cards is well modeled by the simulator as
demonstrated by curve 2. The performance of the Virident
card with a combined read and write workload (curve 4)
is higher than its performance with either a read-only or
write-only workload, which is attributable to the application
of common optimization techniques in the Virident driver
and storage controller.

Our experience with calibration shows that it is difficult
to pin-point how a card is going to perform based solely on
its specifications. FusionIO advertises a 26us access time
for a 512B block. Depending on how the Flash is laid
out, accessing a 4KiB block can take either 208us if each
page is accessed serially, or 26us if they are all accessed in
parallel. Furthermore, we have found that high-speed I/O is
sensitive to variations between the CPU manufactures, CPU
generations, motherboard topology, and versions of Linux.
Our goal with this calibration was to tune the simulator to
match the real-world performance that was observed in our
laboratory’s systems. However, a strength of our simulator



is that it can be tuned differently to predict the expected
performance on other systems.

Based on our experience with these cards, estimating that
they take around 100us to service a 4KiB page read or
write is a reasonable approximation. Similarly, both types of
PCIe-attached Flash cards only get roughly one half of peak
bandwidth with either a single or multiple cards RAIDed
together. As shown by the Moneta [6] research, this type of
under-performance on PCIe is to be expected until the Linux
I/O stack is overhauled to optimize data transfer for random
access, fast, media. Going forward for all subsequent tests
we use a modeled 50% PCIe bus efficiency.

B. Identifying bottlenecks

0 50 100 150 200 250

0
5

0
0

0
0

1
0

0
0

0
0

1
5

0
0

0
0

2
0

0
0

0
0

Num. Threads

IO
P

S

l
l
l

l
l
l
l

l
l
l
l
ll

l
ll

ll
l
lll

lll

l

l

l

l

l l l

l

l

I/O comparison with read−only random I/O benchmark

(1) Virident Direct I/O

(2) Virident Memory−mapped I/O

(3) Virident (constrained 16GB DRAM) Memory−mapped I/O

(4) Virident (constrained 16GB DRAM,madvise 10s) Memory−mapped I/O

(5) Virident STDIO I/O

(6) Virident (constrained 16GB DRAM) STDIO I/O

Figure 5. Comparing memory mapped access versus direct I/O.

The PerMA driver, which provides a memory-mapped
interface, was calibrated by using direct I/O to measure the
performance of the FusionIO and Virident PCIe-attached
Flash cards, rather than memory-mapped I/O. The reason
for the difference in approaches was that direct I/O captures
the raw hardware performance of the PCIe-attached Flash
cards better than OS memory-mapping (or standard buffered
I/O) by avoiding the cache effects of the Linux page cache.
Note that while we were able to successfully limit the
size of the PerMA simulator’s cache and thus avoid any
caching effects, limiting the size of Linux’s page cache
introduces some performance problems that are illustrated
here. These problems are a result of pushing the general-
purpose software optimizations used in Linux in such a
way that they become detrimental to the performance of
data-intensive applications. Figure 5 shows the results of
the uniform, random I/O benchmark when using direct I/O,
standard I/O, and memory-mapped I/O to access a single

Virident PCIe Flash card. The tests were conducted on a
system with unconstrained memory (512 GiB DRAM), using
read-only requests and a sampling of 20 GiB from a space
of 186 GiB. Unlike the direct I/O (top curve), the second
curve shows that the performance of memory-mapped I/O
flattens out as the number of concurrent accesses increases.
Similarly, the fifth curve shows that standard I/O also flattens
out as concurrency increases. Clearly, this lack of scalability
is a product of the software stack throttling performance.
Pinpointing these choke points is the subject of future work.

Another challenge arises with both the memory-mapped
and standard I/O in a constrained memory system, where the
page (or buffer) cache cannot store the entire file and must
evict pages. Curve 3 shows the performance of accessing 100
GiB of memory-mapped data on a system with only 16 GiB
of DRAM. In this scenario, the page cache is forced to evict
pages, and with a random memory access pattern, there are
no pages that are clearly better or worse to remove. Figure
5 shows that the performance plummets when the system is
under memory pressure. Note that the PerMA driver does
not suffer from these limitations, since it is able to handle
its own memory internally. For workloads with uniform,
random access patterns and a working set that is much larger
than the page cache, a partial solution for the constrained
memory environment is to periodically use the Linux system
call madvise with the MADV_DONTNEED flag. This system call
tells the page cache that any page can be discarded, and as
seen by curve 4 the performance improves when advised
every 10 seconds. The performance of standard I/O (shown
by curve 6) also suffers when the page cache is forced to
evict pages in the constrained memory system.

In summary, we found that random access to Flash mem-
ory that was mapped in via the mmap system call incurred
sufficiently high OS overhead that we couldn’t measure the
raw performance of the device. We therefore used direct
I/O to avoid OS overhead while measuring latency and
bandwidth on Flash. As shown in Section VIII, we also
developed algorithms in the simulator tuned to the access
patterns of our application as an initial experiment into
efficient management of memory-mapped pages.

VII. TESTING THE IMPACT OF FUTURE
NVRAM TECHNOLOGY

The goal of this work is to predict how significant of
an impact different technological improvements will be on
data-intensive applications with node-local NVRAM. As
peripheral bus bandwidth increases and NVRAM access
latency decreases, is application concurrency still important
to system-level performance? Can an application using I/O-
attached NVRAM achieve a level of performance that is
competitive with a DRAM-based, in-memory algorithm?
How fast do the NVRAM and I/O bus have to be to achieve
such DRAM-class performance? Will the combination of
fast NVRAM and an efficient memory-map runtime enable



PCIe P C
Label D (µs) Gen. # Lanes E (ps/B) (ps/B)
Lcurr 100 2.0 x8 50% 500 420
Lnxt1 100 2.0 x16 50% 250 420
Lnxt2 50 2.0 x32 50% 125 210
Lnxt3 25 2.0 x64 50% 62 105

Sim-opt 0 N/A ∞ N/A 0 0

Table I
READ CHARACTERISTICS FOR MODELED NVRAM TECHNOLOGY

systems to offload heap allocated structures into persistent
memory, thus reducing the amount of system DRAM needed
with a minimal loss in performance?

To address these questions we test our asynchronous BFS
traversal algorithm with different levels of predicted technol-
ogy improvements, shown in Table I. Through calibration,
we arrived at an effective read and write latency of 100us
for the current generation PCIe-based Flash cards. For future
NVRAM access times we model a system with one-half
(50us) and one-quarter (25us) the current access latency.
Current generation bus technologies (i.e. PCIe 2.0) have
already surpassed the performance of what we observed
on the PCIe 1.1 cards that we had available. A realistic
current generation bus would be PCIe 2.0 x8, and we use
three future bus technologies with PCIe 2.0 x16, PCIe
2.0 x32 and PCIe 2.0 x64 for these projections. For the
current generation’s device controller latency (C) we used
the number presented for the Moneta controller [6] that
was built in FPGAs on the BEE3 platform, and halved it
for each generation. As before the additional driver latency
R was zero for these configurations. Finally, the sim-opt
configuration will be used in later tests to determine the
runtime system’s overhead.

Figure 6 shows the performance of the random I/O read-
write micro-benchmark on the current and three future
generations of modeled NVRAM technology, providing an
upper bound for how much improvement can be had from
the technology scaling. We used 50 million I/O requests
from the uniform random distribution since it is the most
strenuous performance test, with the least opportunity for
caching, and use a 90%/10% read/write mixture. The sim-
ulator was allocated a 2GiB primary FIFO and no hotpage
FIFO to minimize cache effects.

The test was conducted with 32 threads (i.e. one thread
per core) and 256 threads, which oversubscribed the system
by 8×. When using 32 threads, the Lnxt3 system serviced
4.20× the IOPS of the baseline system Lcurr, and 3.49×
of the baseline IOPS with 256 threads. With one half of
the latency and two times the bandwidth, the largest gain
in IOPS between tested generations was between Lnxt2 and
Lnxt1, which showed an improvement in IOPS of 1.95× and
1.92× for 32 and 256 threads, respectively. Overall, Figure
6 shows that for uniform random I/O, oversubscription still

provides significant benefit as technology scales to the Lnxt3
level, although at a slightly diminished level.

32 threads 256 threads

Random I/O with future NVRAM tech: 90% read / 10% write w/2GiB buffer
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Figure 6. Measuring the potential impact of future NVRAM with random
I/O benchmark.

VIII. MODELING LOCALITY OF ACCESS:
CACHING A MORE COMPLEX I/O PATTERN

To the first-order, applications like BFS traversal that
are dominated by unstructured memory requests are well
characterized by a sequence of random I/O with uniform
distribution. However, as we scale up the working set of
this data-intensive application, and push against resource
limitations in the real system or in the simulator, a more
refined I/O model is desired. As described in Section V
the data structures for the asynchronous BFS traversal are
comprised of the algorithmic and the graph data. While
each of these data structures is accessed in an unstructured
pattern, the algorithmic data is accessed far more frequently.
To characterize this more complex data pattern we use a
partitioned, uniform random I/O distribution, where the ad-
dress space is partitioned into two ranges: a small, frequently
accessed range (i.e. hot pages) and a large, infrequently
accessed range. Both subranges are sampled uniformly.
Figure 7 shows the distribution of memory requests to the
address space that occur in the asynchronous BFS traversal.

10% 90%Address Space

95% 5%Memory 
Requests

Hot Region

Figure 7. Partitioned, uniform, distribution of memory requests to address
space.



A. Testing partitioned, uniform random I/O distributions

32 threads 256 threads

Partitioned, uniform random memory requests with 16GB of DRAM buffering

split between primary and hotpage queues.
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The calibration of the PerMA simulator focused on tuning
latency and bandwidth parameters of the simulator to real
world PCIe-attached NVRAM using random I/O sequences
with uniform distribution across the target address space.
However, for asynchronous BFS traversal the distribution of
the majority of memory requests to a small region of the ad-
dress space is ripe for traditional techniques of caching and
buffering. A rich exploration of the best caching techniques
for this application is beyond the scope of this study. The
experiments in this section focus on establishing a guideline
for a simple, first pass optimization to provide some level of
caching, and evaluating the optimization within the PerMA
simulator. The memory request pattern used by this micro-
benchmark is a partitioned, uniform distribution. As shown
in Figure 7, this memory request distribution directs 95%
of the memory request to only 10% of the address space.
These memory requests are uniformly, but independently
distributed for both the 10% of the address space that is
hot, and the other 90% of the address space. This second
micro-benchmark represents a memory request pattern that is
demonstrated by our asynchronous BFS graph traversal and
is more amenable to caching techniques than the uniformly
random I/O sequence.

Page-level caching is implemented in the PerMA simu-
lator by using a hierarchy of FIFO buffers (as shown in
Figure 1), such that when a hot page is removed from the
primary FIFO it is placed in the hotpage FIFO. This allows
frequently faulted pages to remain within the buffer much
longer than less frequently faulted pages. Using this simple

hierarchy of buffers allows the simulator to easily trade-off
how a fixed amount of system memory is utilized, shifting
it between caching for hot pages versus the increasing the
duration of buffering for new (or infrequently faulted) pages.
The second micro-benchmark used the random I/O request
generator with a partitioned, uniform random distribution
where 95% of 150,000,000 memory request were uniformly
distributed across 10% of a 177.6 GiB address space, while
the remaining 5% of requests were distributed across the
remaining 90% of the address space (Figure 7). Thus the
micro-benchmark accesses approximately 46 GiB of data.
The I/O requests were composed of a mixture of 90%
reads and 10% writes to model the request pattern of our
asynchronous BFS traversal.

The results of the second micro-benchmark are shown
in Figure 8, which plots the number of threads running
versus the average number of memory requests per second
achieved. Figure 8 shows the performance improvement as
a greater percentage of memory is allocated to the hotpage
FIFO in a system where the PerMA simulator uses 16 GiB
of DRAM for buffering and Lcurr NVRAM technology. For
simulations with both 32 and 256 threads, the number of
requests serviced per second increases as more of the 16
GiB of DRAM is allocated to the hotpage FIFO, rather
than the primary FIFO. Figure 8 shows that a partitioned,
uniform random access pattern requires only a small amount
of primary buffering to filter out the relatively infrequently
faulted pages from the hot pages. This allows nearly all
of the system’s DRAM to be allocated for the hotpage
FIFO. The opposing constraint for real world applications
where there is some short term page reuse and the hotpage
FIFO is smaller than the working set, is that a very small
primary FIFO may allow hot pages to flush a normal page
from the FIFO before it is finished being used. Furthermore,
the frequent eviction of “normal” pages can cause them to
become hot enough to put additional pressure on the hotpage
FIFO. Therefore, we make the conservative decision for
future tests to use 25% of DRAM for the primary FIFO
and 75% of the DRAM for the hotpage FIFO.

IX. RESULTS: BFS ON FUTURE NVRAM GENERATIONS

We performed experiments using our asynchronous BFS
traversal on four simulated NVRAM devices, two Virident
NAND Flash cards in a RAID 0 configuration, and DRAM
only. Figure 9 shows the performance of our asynchronous
BFS traversal using these configurations. The performance
measure used is the Graph500 standard of traversed edges
per second (TEPS), where higher is better. To provide a
realistic and challenging experiment, our experiments used
the R-MAT [12] graph generator outlined in the Graph500
[13] benchmark. Using the generator, we created a scale-free
graph with 231 vertexes with an average out-degree of 16.
The graph instance is labeled RMAT 31, and the data set
for this graph is 146 GiB of vertex and edge data plus 24



GiB of BFS algorithmic data. The execution on the Virident
PCIe-attached Flash cards used a total of 40 GiB of DRAM.
The application allocated 24 GiB of BFS algorithmic data
on the heap leaving 16 GiB for page cache. The experiments
with the PerMA simulator were also given 40 GiB of DRAM
but the BFS algorithmic data was memory mapped into the
persistent region and the DRAM was split into 10 GiB for
the primary FIFO and 30 GiB for the hotpage FIFO.

Figure 9 shows the performance of the asynchronous BFS
traversal on real PCIe-attached NVRAM, in-memory, the
raw simulator, the simulated devices Lcurr, Lnxt1, Lnxt2, and
Lnxt3. Examining the performance of the simulated devices
we observe that concurrency is still critical for the projected
technology generations, as the oversubscribed examples sig-
nificantly out-perform those with only 32 threads. However,
the trends in relative performance gain between technology
generations is smaller with oversubscription than without.
Specifically, the relative gain from Lnxt2 to Lnxt3 and Lnxt3
to sim-opt is much smaller with 256 threads than with 32
threads. Furthermore, the TEPS that sim-opt achieved is
not significantly higher with oversubscription than with 32
threads. These trends indicate that as peripherally-attached
NVRAM becomes faster and “closer” to main memory,
the benefit from oversubscription diminishes. Overall, these
results highlight that a highly concurrent algorithm with
asynchronous I/O can hide access latency though oversub-
scription, and that it will allow the algorithm to approach
peak performance with less aggressive technology.
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Figure 9. Measuring the potential impact of future NVRAM on the
asynchronous BFS traversal. Showing graph size versus traversed edges
per second.

The simulated device Lcurr is configured to compare with
the two Virident cards in a RAID 0 configuration. The sim-
ilarity in performance between Lcurr and the PCIe-attached

Flash, when using 32 threads, demonstrates the fidelity of
the simulator and its ability to model real world systems.
However, the performance with PCIe-attached Flash and 256
threads was 0.61× slower than what was predicted by the
simulator. The significant performance difference between
Lcurr and Virident at 256 threads shows the system software
overhead (described in Section VI-B) when the application
uses thread oversubscription and memory-maps the Viri-
dent devices. This application would see significant benefits
through operating system improvements in the memory-map
implementation when oversubscribing.

The right-most two bars of Figure 9 are the results for
the simulator running with no delays as shown by the
sim-opt bar, and the asynchronous BFS search running
in-memory (all data stored on a tmpfs ramdisk). The in-
memory (DRAM) performance is an upper bound for the
system configuration, where further improvements cannot
be achieved through improved NVRAM for this applica-
tion. The sim-opt result shows the best possible result for
running in the simulator, and approximates the upper-limit
for any memory-mapped runtime since the majority of the
buffer management tasks required by the simulator are also
required for a memory-mapped runtime. The overhead of
the simulator is 24% and 29% for 32 and 256 threads,
respectively, as shown by the performance delta between
the in-memory speed and sim-opt speed. Figure 9 shows
that Lnxt3 is able to effectively amortize nearly all NVRAM
latency with 256 threads as it achieves 0.97× the TEPS
of the sim-opt system, which has infinite bandwidth and no
delays. Furthermore, it approaches DRAM speeds using 256
threads: 0.75× the TEPS of the in-memory system.

X. RESULTS: BFS IN CONSTRAINED MEMORY

As the problem size of data-intensive applications con-
tinues to grow, system memory (DRAM) is frequently a
limiting factor in the size of problem that we are able
to tackle. By moving data structures in the asynchronous
BFS traversal that are traditionally heap allocated into the
persistent memory we are able to test the resilience of
this latency tolerant algorithm to constraints on the amount
of main memory available. Figure 10 show the effects
of reducing the available system DRAM when using one
thread per core and thread oversubscription. Performance is
measured in TEPS, and each curve is the performance of
the asynchronous BFS traversal on a simulated technology
generation. As noted earlier, the memory constraints from
the previous test were 16 GiB page buffers and 24 GiB of
BFS algorithmic data. Therefore, a system with 40 GiB of
DRAM is the baseline, and the algorithm is tested with up
to 42 GiB and down to 12 GiB, with 25% of the memory
used for the primary FIFO and 75% for the hotpage FIFO.
Figure 10 shows that as the system memory is constrained
performance slowly drops off, where a system with 16 GiB
of DRAM and Lnxt3 NVRAM has 0.82× the TEPS of the
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Figure 10. Measuring the potential impact of future NVRAM on the asynchronous BFS as system memory is constrained. Showing system DRAM versus
traversed edges per second.

system with 40 GiB of DRAM. However, below 14 GiB
of DRAM the performance declines rapidly. Additionally,
adding more DRAM, for a system with 42 GiB, provides
only a small performance benefit.

As before, the sim-opt curve has no delays or band-
width limitations and thus represents the upper bound of
the simulator’s performance. Figure 10 shows that Lnxt3 is
within 3% of the simulator’s raw performance with thread
oversubscription, but is 27% slower than sim-opt when
using only one thread per core. Overall, the combination
of a latency tolerant algorithm and only modestly improved
NVRAM performance can run effectively on a system with
only 40% of the DRAM and suffer only a 21% reduction
in performance. Figure 10 also shows a sharp drop in
performance as the system’s DRAM is reduced to 12 GiB.
It is interesting to note that performance of each simulation
drops dramatically, which indicates that this degradation is
independent of NVRAM technology. Identifying the source
of this performance cliff will be the subject of future
investigation.

XI. CONCLUSIONS

The demands of data-intensive applications run counter
to contemporary design trends for HPC architectures, where
core count is dramatically outstripping main memory ca-
pacity and bandwidth. One hope for mitigating this trend
is improvements in non-volatile random access memory
technologies, specifically improved performance and density,
and reduced energy consumption, making it feasible for
NVRAM to augment DRAM in the memory hierarchy.

We have developed the PerMA simulator that allows us to
model the impact of future generations of I/O-bus-attached
NVRAM on application performance at scale. The simulator
provides a memory API to the persistent memory, models
latencies and bandwidths ranging from current Flash down to
DRAM-like performance, and supports hundreds of threads
at native speed. We have calibrated the PerMA simulator
to provide a first-order approximation of the performance
of current generation PCIe-attached Flash cards. We then
scaled down the NVRAM access times and peripheral bus
latencies to model three combinations of future generations
of technology improvements.

The simulator has provided new insights into the interac-
tion of algorithmic techniques (e.g. thread oversubscription
or out-of-core data structures) with future NVRAM tech-
nology generations as illustrated in an important benchmark
application. Using the simulator, we have quantified the
potential performance of an unstructured asynchronous BFS
graph traversal algorithm. We have shown that with sufficient
concurrency, this algorithm, using NVRAM, will be able to
approach the performance of a fully in-memory algorithm.
Using 40GB of DRAM plus Flash, the BFS algorithm could
achieve 75% of the fully in-memory (170GB) performance
on the most aggressive technology generation modeled.

Furthermore, this work illustrates that it may be possible
to get scalable performance for out-of-core algorithms, with
appropriate caching algorithms. Guided by the access pat-
terns of asynchronous BFS, we have implemented a simple,
two level buffering scheme within the simulator to provide



locality-optimized page mapping. We have shown that the
combination of a latency tolerant, concurrent algorithm,
future NVRAM devices, and an optimized memory-map
runtime system enables migration of data structures that
were traditionally heap allocated into persistent memory.
This new environment will allow data-intensive applications
both to scale to larger problem sizes without increasing
main memory, or alternatively will allow for the same size
problems to run in greatly constrained memory.
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